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ABSTRACT  

We consider the problem of weak signal detection in strong disturbance with a subspace structure. Unlike 
conventional subspace detection techniques relying on the availability of a large amount of training data, we 
consider a knowledge-aided (KA) subspace detection approach for training limited scenarios by incorporating 
partial prior knowledge of the subspace. A unique feature of the proposed approach is that it can identify the 
missing subspace bases and recover the full subspace structure by using only the test signal, thus bypassing the 
need for training data. The proposed approach utilizes a Bayesian hierarchical model for knowledge 
representation. The model is integrated within a sparse Bayesian framework, which promotes parsimonious 
subspace representation of the observed data. A variational Bayesian inference algorithm is developed based on 
the proposed model to recover parameters and subspace structures associated with the disturbance, which are 
then brought into a generalized likelihood ratio test (GLRT) to perform signal detection. Numerical results are 
presented to illustrate the performance of the proposed subspace detector in comparison with several notable 
existing methods. 

1.0 INTRODUCTION 

Detecting a weak signal in strong disturbance (noise, interference, clutter, jamming, etc.) is a fundamental 
problem in radar, sonar, and many other applications. A popular approach is based on using an estimated 
covariance matrix of the disturbance obtained from training data for disturbance mitigation. This has led to a 
family of covariance matrix based (a.k.a. fully adaptive) detectors (see [1] and references therein). One limitation 
of these detectors is that they require heavy training to ensure the accuracy of the covariance matrix estimate. 
Training requirement can be reduced by exploiting structures of the disturbance. A frequently considered one is 
when the disturbance (approximately) has a low-rank subspace structure. When the subspace is fully known, 
signal detection may proceed by projecting the observation into the orthogonal complement of the subspace, 
followed by cross-correlating with the target signal and energy normalization. This leads to a beta test statistic 
[2], which is optimum in the sense that it is uniformly most powerful (UMP) invariant [3]. When the subspace is 
unknown, it can be estimated by using, e.g., the principal eigenvectors of the sample covariance matrix 
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constructed from training data. The resulting subspace detector is called the eigencanceler [4], which belongs to 
a highly successful class of reduced-rank (a.k.a. partially adaptive) detectors [5]-[8].  

Exploiting prior knowledge is another way to reduce training requirement. Techniques following this direction is 
usually dubbed knowledge-aided (KA) processing [9], where the prior knowledge often refers to a prior estimate 
of the disturbance covariance matrix. Most these techniques often employs a KA estimate of the disturbance 
covariance matrix via colored loading, which involves linearly combining the prior estimate with the sample 
covariance matrix. The weighting coefficients can be determined via a Bayesian approach by treating the 
covariance matrix as a random matrix assigned with a conjugate prior, e.g., the inverse Wishart distribution [10], 
[11]. Then, the posterior estimate takes a linear combining form, with the combining coefficients determined by 
a parameter that represents the reliability of the prior knowledge. Most above KA based techniques can be 
thought of as extensions of the fully adaptive detection, since they rely on an improved estimate of the full-
dimensional covariance matrix. Because of their fully adaptive nature, these KA detectors still require 
considerable training unless the data dimension is fairly small or the prior knowledge is sufficiently accurate. In 
typical set-ups, the training size of a KA detector can be reduced roughly by a factor of two compared with its 
non-KA counterpart (e.g., [11]). While impressive, the reduction may be insufficient for radar detection in non-
homogeneous environments, where training data is scarce since the clutter is location dependent and may vary 
significantly around the test cell. 

In this paper, we consider subspace detection with partial prior knowledge of the disturbance subspace, and 
develop new partially adaptive KA methods for detection with extremely limited data (i.e., no training). Our 
study is motivated by the fact that in practice, we often have some prior knowledge of the disturbance subspace, 
either from prior observations or established database of the environment being observed, e.g., spatial locations 
of dominant clutter scatterers (major natural or man-made structures) in the surveillance area, and the angle-
Doppler trace of the clutter spectrum (a.k.a. clutter ridge) observed by an airborne phased-array, which can be 
determined by motion parameters of the moving sensing platform [12, Section 2.6.2.]. Such information 
translates to knowledge of some of the subspace basis vectors. To incorporate such partial prior knowledge for 
detection, we introduce a hierarchical model for knowledge representation, which is integrated within a Bayesian 
framework for inference, leading to parsimonious subspace representations of the observed data. Our Bayesian 
framework for KA processing is based on sparse Bayesian learning [13] and is distinctively different from the 
Bayesian framework used for covariance matrix based KA processing [10], [11]. We develop a variational 
Bayesian inference algorithm to recover parameters and structures associated with the disturbance, which are 
then brought into a generalized likelihood ratio test (GLRT) to perform detection. 

Notation: Vectors (matrices) are denoted by boldface lower (upper) case letters. All vectors are column 
vectors.  Superscripts *( )⋅ , T( )⋅  and H( )⋅  denote complex conjugate, transpose and complex conjugate 
transpose, respectively. I  denotes an identity matrix. | |  denotes the cardinality of a set . Gamma( ; , )x a b
denotes the Gamma distribution of random variable  x  with scale and rate parameters a  and b , respectively: 

1 1Gamma( ; , e) ( ) a a bxx a b a b x− − −= Γ   (1) 

where 1

0
( e) da ta t t

∞ − −Γ =   denotes the Gamma function. Finally, ( ; , )N x μ Φ  denotes the circularly symmetric

complex Gaussian probability density function (PDF) of random vector x  with mean μ  and covariance matrix 
Φ : 

1 1H( ; , ) | | exp ( ) ( ) .{ }N − −= π − − −x Φ x xμ μ μΦ Φ   (2) 
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2.0 PROBLEM FORMULATION 

Consider the hypothesis testing problem of detecting a known multichannel signal in disturbance: 
0

1

:
:

H
H κ

=
= +

y d

y s d
(3) 

where 1N×∈y   denotes the observation (a.k.a. test data), s  the target signal which is assumed known but 
with an unknown complex-valued amplitude κ , and d  the disturbance signal. The multichannel observation 
y  may consist of samples taken in space (with multiple antennas), time, or jointly in both domains as in 
STAP [5]. In phased-array and MIMO systems, s  is often referred to as the steering vector parameterized by 
the radar look angle and/or target Doppler frequency, while d  may include clutter, jamming and noise. The 
steering vector s  is known since for typical radar operation, the above hypotheses are tested for specific 
values of angle and Doppler frequency [14]. 

In many cases of practical interest, the disturbance d  may have a low-rank subspace representation [3]: 
= +d H nβ (4) 

where N L×∈H  consists of L N< linearly independent basis vectors of the subspace, 1L×∈β  contains the 
subspace coefficients, and n  is complex white Gaussian noise vector with zero mean and covariance 2σ I . 
For the hypothesis testing (3) to be meaningful, it is assumed that span( )∈/s H . Clearly, Hβ  is a low-rank 
component in d . As noted before, jamming and clutter in radar often have a low-rank subspace structure. 

While the detection problem (3) has been well studied under the condition H  is exactly known (e.g., [3]), we 
consider a practically motivated case where only partial prior knowledge of H  is available. To model such 
prior knowledge, we employ an overcomplete dictionary matrix N M×∈ , M N , such that 

=H xβ  (5) 
where x  is an 1M ×  sparse vector with sparsity L . The dictionary matrix can be formed on a fine grid 
covering the entire parameter space that parameterizes  , e.g., 1-dimensional (1D) direction-or-arrival (DOA) 
in beamforming or 2-dimensional (2D) angle-and-Doppler plane in STAP. To focus on the main problem (i.e., 
subspace detection with inaccurate prior knowledge) without causing excessive ramifications, we assume M  is 
sufficiently large and will not consider the grid-mismatch problem due to finite discretization on the parameter 
space, which can be addressed by a number of recent techniques (e.g., [15]-[17]). 
The prior knowledge can be represented as a group of columns of  . The knowledge is incomplete in that 
the subset may miss some columns that are necessary to represent  . More precisely, let 

{1,2, , },M… (6) 
denote the index set that indexes the columns of  . If ⊂   denotes the true index set for  , the
knowledge can be denoted by a subset ⊂  . We do not assume knowledge of  , the cardinality of 
and, equivalently, the rank of H . The problem of interest is to identify missing bases in   via Bayesian
learning, which are used jointly with the prior knowledge to solve the hypothesis testing (3). 
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3.0 KA SUBSPACE SIGNAL DETECTION 

We consider a generalized likelihood ratio test (GLRT) approach for the detection problem by incorporating 
knowledge of the subspace. The likelihood functions under the 0H  and 1H  hypotheses given observation y
are 

2 2
0 ( , , ; ) ( ; , ),cp Nσ σ=H y y H Iβ β   (7) 

2 2
1( , , , ; ) ( ; , ).cp Nκ σ κ σ= +H y y s H Iβ β   (8) 

The test variable of the GLRT, given by 
2

2

2
1{ , , , }

2
0{ , , }

max ( , , , ; )
,

max ( , , ; )

p

p
κ σ

σ

κ σ
σ

H

H

H y

H y
β

β

β
β

  (9) 

requires finding estimates of the unknown parameters under both hypotheses, which are discussed next. 

Under 1H , it is easy to see the maximum likelihood estimate (MLE) of the amplitude κ conditioned on H  
and β  is 

H

H

( )κ̂ −= s y H

s s

β
  (10)

Plugging κ̂  in (8) and maximizing the resulting likelihood with respect to (w.r.t.) 2σ  gives the MLE of the 
noise variance as 

2 2
1

1ˆ ,
N s sP y P Hσ ⊥ ⊥= −‖ ‖β   (11) 

where the subscript 1 indicates the estimate is obtained under the hypothesis 1H  and H 1 H( )⊥ −−sP I s s s s
denotes the projection matrix that projects to the orthogonal complement of s . Substituting (11) and (10) back 
into (8), we can obtain the MLEs of H  and β  by 

 
1 1 ,

2{ , } arg min .H s sH P y P H⊥ ⊥= −‖ ‖ββ β   (12)
The above least-square (LS) fitting implies the following interpretation for the estimation. Specifically, after 
concentrating out κ  and 2σ  from the likelihood function, the parameter estimation problem under 1H  
reduces to an equivalent and simplified one that involves  estimating only H  and β  by using the transformed 
data ⊥

sP y : ⊥ ⊥= +s sP y P H eβ , where the 1N ×  noise vector e  consists of independent and identically 
distributed (i.i.d.) zero-mean complex Gaussian entries. Note that in the original estimation problem, the real 
fitting errors ⊥ ⊥−s sP y P Hβ  computed at the true values of H  and β  are slightly correlated. This 
interpretation will be employed in Section IV. 

The estimation under 0H  proceeds in a similar manner by using (7). Specifically, the MLE of the noise 
variance conditioned on H  and β  is 

22
0

1ˆ ,
N

y Hσ = −‖ ‖β   (13) 
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where the subscript 0 signifies the estimate is obtained under hypothesis 0H . In turn, the MLEs of H  and β  
are given by 

 
0 0

2
,{ , } arg min .HH y H= −‖ ‖ββ β   (14) 

Clearly, (12) and (14) are similar, but neither can be uniquely solved without additional information of the 
unknowns, which are too many relative to the data size. One approach is to exploit a parametric model for the 
subspace matrix H , e.g., the DOA 1Lφ ×∈  of the interference sources in a beamforming setup, in which the 
problem becomes to jointly estimate φ  and β . Equivalently, we can use the sparse representation (5) and 
write the cost function in (12) and (14) in the following unified form: 

2min ,
x

z Ax−‖ ‖ (15) 

where ⊥
sz P y  and ⊥

sA P  under 1H , while under 0H , z y  and A  . The minimization in (15) has 
to be performed with a sparsity constraint on x . The sparsity recovery problem can be solved by using a wealth 
of techniques from greedy methods to 1 -norm based procedures (e.g., [18]). However, these techniques are 
difficult to incorporate prior and potentially contaminated knowledge for subspace recovery. The problem is 
deferred to Section IV, where we develop new techniques to incorporate uncertain prior knowledge of the 
subspace structure to estimate H  and β . 

Once  
1 1{ , }H β  and  

0 0{ , }H β  have been obtained, they can be substituted in (10), (11) and (13) to compute 

the estimates of the signal amplitude κ  and noise variance 2σ . Using these parameter estimates in (8) and 
(7), it is easy to show that the test variable (9) can be simplified to a ratio of the noise variance estimates, and 
the GLRT is given by 

1

0

2
0

GLRT 2
1

ˆ
ˆ

H

H
T σ τ

σ
  (16) 

where τ  denotes a test threshold. 

4.0 KNOWLEDGE-AIDED SUBSPACE RECOVERY 

4.1 A Bayesian Knowledge Model 

As shown in Section III, the subspace estimation problems (12) and (14) under both hypotheses can be cast in 
one framework based on the following measurement model: 

,= +z Ax e   (17) 
where 1N×∈z   denotes the observation, N M×∈A   a known dictionary matrix, 1M ×∈x   an unknown sparse 
vector with unknown sparsity L , and e  the measurement noise with distribution 1( , )cN γ −0 I , where $\gamma$ 
denotes the inverse variance, which is also unknown. Sparse Bayesian learning (SBL) [13] is a popular approach 
that can be used to recover the sparse vector x  from (17). However, SBL does not impose any prior knowledge 
on the sparsity pattern of x . We need some extensions to incorporate prior knowledge to recover x . 
To facilitate discussions, a brief review of SBL (see [13] for more details) is useful. The approach uses a 
Gaussian inverse Gamma hierarchical model. Specifically, the sparse vector x  is modeled as conditional 
Gaussian with PDF given by 

1

1

( | ) ( ;0, ),
M

c m m
m

p N x α −

=

= ∏x α (18) 

Adaptive Radar Signal Detection with 
Integrated Learning and Knowledge Exploitation 

STO-MP-SET-241 8-3 - 5 

PUBLIC RELEASE 

PUBLIC RELEASE 



where mx  denotes the m -th element of x  and 1
mα −  its inverse variance. Meanwhile, a Gamma prior is 

employed for the inverse variance vector T
1[ , , ]Mα α…α  : 

1

( ) Gamma( ; , ),
M

m
m

p a bα
=

= ∏α (19) 

where suggested choices for hyperparameters a  and b  are very small values, e.g., 610− , such that the prior is 
uniform (over a logarithmic scale) [13]. Such a broad prior over the hyperparameters allows the posterior 
probability mass to concentrate at very large values of some of mα , which effectively drives the corresponding 

mx  (deemed irrelevant to data) to zero, thus leading to a sparse solution. 

With prior knowledge on the support of x , it is no longer meaningful to set the prior )( mp α  to be identically 
non-informative across different m . For subspace coefficients mx  belonging to the knowledge set, i.e., 
m ⊂  , where   is defined in Section II, we should avoid using broad and sparsifying prior )( mp α , which 
causes the posterior mean to become unbounded. The spread of the Gamma distribution can be reduced by 
choosing a larger value for the rate parameter b . Therefore, we propose to replace (19) with a fixed b  by the 
following prior model to incorporate prior knowledge: 

1

( ) Gamma( ; , ),
M

m m
m

p a bα
=

= ∏α   (20) 

where mb  is allowed to vary with m . Specifically, we choose a relatively larger value for mb , e.g., 
[0.1,1]mb ∈ , if m ⊂  , so that the prior is non-sparsifying over  , while the other mb  remain small. The

resulting model is referred to as the subspace knowledge (SK) model: 

6

, ,
SK:

10 , ,m c

b m
b

m−

 ∈
= 

∈




(21) 

where [0.1,1]b ∈  and c  denotes the complement of  .

Finally, the inverse variance γ  of the noise in (17) can be jointly estimated in the Bayesian approach by 
employing a prior for γ . We use a non-informative Gamma prior for γ  as in [13]: 

( ) Gamma( ; , ),p c dγ γ=   (22) 
where 610c d −= = . 

4.2 A Bayesian Knowledge Model 

Let { , , }γθ x α  denote a vector containing all parameters to be estimated. With the probabilistic modeling 
discussed in Section IV-A, these parameters are treated as latent variables. A standard Bayesian inference 
procedure would proceed to compute the posterior 

( | ) ( )( | ) ,
( )

p pp
p

= z θ θ
θ z

z
(23) 
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which is however infeasible for the considered problem since the marginal distribution 
( ) ( | ) ( )dp p p= z z θ θ θ  cannot be computed analytically.

To circumvent the difficulty, we employ variational Bayesian inference that utilizes an approximation of the 
posterior ( | )p θ z . Variational Bayesian methods have been used with great success in various applications 

(see [19] and references therein). Specifically, we write θ  in a partitioned form: 1 2, , , ,{ }K…θ θ θ θ  where 

3K =  for the SK model with: 1θ x , 2θ α , and 3 γθ  . A popular approximation of the posterior 

( | )p θ z  is based on the mean field approximation (e.g, [19]): 
1

( | ) ( ),
K

k k
k

p q
=

≈ ∏θ z θ  where the component

PDF is given by 

exp ln ( , )
( ) ,

exp ln ( , ) d
( )

( )
l k

k k
l k k

p
q

p
=/

=/

=
 
 

z θ
θ

z θ θ
(24) 

where ( , ) ( | ) ( )p p p=z θ z θ θ  denotes the joint distribution of z  and θ , while l k=/⋅  denotes the statistical 
expectation w.r.t. distributions ( )l lq θ , l k∀ =/ , that is,  

ln ( , ) ln ( , ) ( )d .l k l l l
l k

p p q=/
=/

=  ∏z θ z θ θ θ   (25) 

Note that (24) is not an explicit solution since the factor posterior ( )k kq θ  depends on the other factors 
( )l lq θ , l k=/ . However, it points naturally to an iterative procedure for finding the factors. Specifically, we 

can start by initializing ( ) ( ) ( )t
k k kq p=θ θ , for 0t = , where t  is the iteration index; that is, the factor 

posteriors are initialized by their corresponding prior distributions. Then, for the t -th iteration, we can update 
( ) ( )t
k kq θ  by using ( 1) ( )t

l lq − θ , l k=/ , in the right-hand side of (24). Each iteration cycles through all factors 
from 1k =  to k K= , and the iterative process stops till a practical convergence criterion has been met. Next, 
we consider variational Bayesian inference based subspace estimation by integrating the knowledge model 
introduced in Section IV-A. 

With the SK model, we have 
( , , , ) ( | , ) ( | ) ( ) ( )p p p p pγ γ γ=z x α z x x α α   (26) 

where 1
c( | , ) ( ; , )p Nγ γ −=z x z Ax I , ( | )p x α is given by (18), ( )p α by (20), and ( )p γ by (22), respectively. 

It can be shown the factor posteriors ( )xq x , ( )qα α , and ( )qγ γ  are respectively Gaussian, product Gamma, 

and Gamma distributions: c( ) ( ; , ),xq =x x Φ μ
1

( ) Gamma( ; 1, ),
M

m m
m

q a bα α
=

= +∏α   

( ) Gamma ; , ,( )q c N dγ γ γ= +   where H ,γ=  ΦA zμ  H 1,( )γ −=   +  Φ A A D

2
, , 1, , ,m m m m mb b m Mμ= + + Φ = …   2 Htr{ }.d d z A AΦA = + − +‖ ‖μ

As such, the update of the factor posteriors boil down to the update of these parameters. We summarize the 
resulting estimator in Algorithm 1. 
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Algorithm 1 - SK-based subspace estimator 

Initialize Let (0) /m ma bα =  , 1, ,m M= … , (0) /c dγ =  , (0) (0) (0)
1diag , ,{ }Mα α…   A  , and 0t = .

repeat  
1) Set 1t t= + .
2) Update the covariance and mean of ( ) ( )t

xq x : 
( ) ( 1) H ( 1) 1,( )t t tγ − − −= +   Φ A A D   (27) 

( ) ( 1) ( ) H .t t tγ −=  Φ A zμ (28) 

3) Update the rate and mean of ( ) ( )tqα α

( )2( ) ( ) ( )
, ,t t t

m m m m mb b μ= + + Φ   (29) 

( ) ( )( 1) / , 1, , ,t t
m ma b m Mα = + = …     (30) 

where ( )t
mμ  denotes the m -th element of ( )tμ  and ( )

,
t

m mΦ  the m -th diagonal element of ( )tΦ . 

4) Update the rate and mean of ( ) ( )tqγ γ
( ) ( ) 2 ( ) H|| tr|| ,{ }t t td d z A AΦ A = + − +μ (31) 

( ) ( )( ) / .t tc N dγ = +   (32) 

Until convergence

Convergence is reached when the difference of some parameter estimates over two consecutive iterations is 
sufficiently small. We use ( )tμ , the posterior mean of ( )xq x  and also an estimate of the sparse vector x . An 

estimate of the subspace matrix (i.e., H  under 0H  or ⊥
sP H  under 1H ) can be obtained as the columns of A

corresponding to the support of ( )tμ . 

5.0 NUMERICAL RESULTS 

We now present simulation results to illustrate the performance of the proposed detector. The disturbance d  has 
a subspace structure as in (4), where H  is formed by L  Fourier vectors with frequencies centered around the 
zero frequency, i.e., a lowpass narrowband interference. Specifically, let ′  denotes an N M ′×  discrete 
Fourier transform (DFT) matrix, and the subspace matrix H  consists of the following columns of 

′ :
1 1 11,2, , , , 1, 2, ,

2 2 2
{ }L L LM M M+ − −     ′ ′ ′… − + − + …          

 , where ⋅    and ⋅    denote the floor 

and, respectively, ceiling operators. We set 32N = , 64M ′ = , and 7L =  in simulation. The target signal s  is 
a Fourier vector with a normalized frequency 0.3  Hz. A standard assumption is that the interference bandwidth 
does not overlap with the mainlobe of the target response (otherwise, the interference will be detected as target). 
Therefore, 4 columns of ′ , which cover the mainlobe of the target response, are removed to form the 
$N\times M$ dictionary matrix   [cf. Section II], where 60M = . The signal-to-noise ratio (SNR) and 
interference-to-noise ratio (INR) are defined as: 2 2SNR | | /N κ σ=  and 2 2INR /N σ= β‖ ‖ .  
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For brevity, the proposed detector based on model (21) is referred to as the SK detector. We compare with 4 
other known detectors as benchmarks, namely the clairvoyant subspace detector of [2], which assumes perfect 
knowledge of the subspace matrix H , the conventional KA detector, which takes the same form as the 
clairvoyant detector except that H  is replaced by the prior knowledge of H , the adaptive subspace detector 
(ASD), and a non-informative SBL detector, which employs a similar Bayesian inference framework as the 
proposed ones but is not provided with any prior knowledge of the subspace. The ASD is also identical to the 
clairvoyant detector but replaces H  with an estimate consisting of the L  principal eigenvectors of the sample 
covariance matrix. The latter is constructed from 8T =  target-free homogeneous training signals, which share 
the same subspace matrix H . Note 0T =  for the other detectors, which require no training. For the KA 
detectors, including the conventional KA and SK, we consider two cases for the prior knowledge   including:

• Case 1: =  . The prior knowledge is perfect;
• Case 2: ⊂  . The prior knowledge for each simulation trial contains 4=  randomly selected

indices of  .

5.1 Case 1: Full Knowledge 

Case 1 is of interest to show how the proposed SK behaves in the presence of perfect prior knowledge. Figure 
1(a) depicts the probability of detection dP  versus the SNR for the various detectors, where INR 30=  dB 

and the probability of false alarm 3
f 10P −= . The conventional KA in the current case reduces to the 

clairvoyant detector. The performance of the proposed SK is also nearly identical to the clairvoyant, 
manifesting the benefit of the prior knowledge. The near optimality also indicates that SK rarely rejects 
correct basis vectors in   or adds erroneous basses in c . Meanwhile, without using the prior knowledge  ,
SBL is the worst detector. The ASD is the only detector that requires training. With 8T =  target-free i.i.d. 
training signals, its performance is still notably worse than the KA detectors. Figure 1(b) shows dP  versus fP , 
i.e., the receiver operating characteristic (ROC) curve, where SNR 15=  dB and INR 30=  dB. The relations
among the various detectors are similar to what were observed before.  

(a)                  (b) 

Figure 1: Case 1 results. (a) dP  vs. SNR with INR = 30 dB  and -3
fP = 10 . (b)ROC curve with SNR = 15

dB and INR = 30  dB. 
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5.2 Case 2: Partial Knowledge 

We next consider a partial knowledge case with ⊂   and 4= , that is, the prior knowledge   contains
4 randomly selected bases from   in each trial. The results are shown in Figure 2. It is seen that the SK
detector is the closest to the clairvoyant and significantly outperforms the conventional KA. This is because 
SK is able to identify missing bases in  c  and therefore can better reject the interference than the
conventional KA detector. 

     (a)                                                                       (b) 

Figure 2: Case 2 (partial knowledge) results. (a) dP  vs. SNR with INR = 30 dB  and -3
fP = 10 . (b)ROC 

curve with SNR = 15  dB and INR = 30  dB. 

6.0 CONCLUSIONS 

We presented a new knowledge-aided (KA) approach for signal detection in strong disturbance by exploiting 
prior knowledge of the subspace structure of the disturbance. A unique feature is that the proposed approach 
accounts for the fact that the prior knowledge available in practice may be incomplete. To address such 
uncertainties, we introduced a Bayesian hierarchical model for knowledge representation. The model was 
integrated in a Bayesian learning framework, and a variational inference algorithm based on simple iteration 
steps was developed to solve the associated inference problem. Simulation results, which cover two cases of full 
and, respectively, partial prior knowledge, demonstrate that the proposed KA detectors can benefit from prior 
knowledge and significantly outperform conventional detectors when the available prior knowledge is 
incomplete. 
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